Numerical simulation of bubble rising in viscous liquid

نویسندگان

  • Jinsong Hua
  • Jing Lou
چکیده

An improved numerical algorithm for front tracking method is developed to simulate the rising of a bubble in quiescent viscous liquid due to buoyancy. In the new numerical algorithm, volume correction is introduced to conserve the bubble volume while tracking the bubble’s rising and deforming, and volume flux conservation based SIMPLE algorithm is adopted to solve the Navier–Stokes equation for fluid flow using finite volume method. The new front tracking algorithm is validated systematically by simulating single bubble rising and deforming in quiescent viscous liquid under different flow regimes. The simulation results are compared with the experimental measurement in terms of terminal bubble shape and velocity. The simulation results demonstrate that the new algorithm is robust in the flow regimes with larger ranges of Reynolds number (Re < 200), Bond number (Bo < 200), density ratio (ql/qb < 1000) and viscosity ratio (ll/lb < 500). The new front tracking algorithm is also applied to investigate bubble rising and deforming behaviour in the various flow regimes of ‘‘air bubble/water solution’’ system under effects of Reynolds number, Bond number, density ratio, viscosity ratio as well as the bubble initial shape, which have been explored previously by experiments. The predicted bubble shape and terminal velocity agree well with the experimental results. Hence, the new modelling algorithm expands the conventional front tracking method to more realistic and wider applications. 2006 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Simulation of Hydrodynamic Convection in Rising Bubble Under Microgravity Condition

In this work, rising of a single bubble in a quiescent liquid under microgravity condition was simulated. The related unsteady incompressible full Navier-Stokes equations were solved using a conventional finite difference method with a structured staggered grid. The interface was tracked explicitly by connected marker points via hybrid front capturing and tracking method. One field approximatio...

متن کامل

Evaluation of Recirculation Time in Bubble Train Flow by Using Direct Numerical Simulation

In this research, hydrodynamics of the Bubble Train Flows (BTF) in circular capillaries has been investigated by Direct Numerical Simulation (DNS).The Volume of Fluid Based (VOF) interface tracking method and streamwise direction periodic boundary conditions has been applied. The results show that there exists an appropriate agreement between DNS and experimental correlation results. The re...

متن کامل

Direct numerical simulation of rising bubble interaction with free surface using level contour reconstruction method

Bubble rising phenomenon is widely found in many engineering applications including stream generators in power plants. Many experimental and numerical researches have been performed to predict the dynamic behavior of the bubble rising process. Most simulations so far have focused on evolution behavior of the rising bubble itself. Rising bubbles could penetrate through the top free surface which...

متن کامل

Numerical Simulation of the Buoyancy-Driven Bouncing of a 2-D Bubble at a Horizontal Wall

The rise of a buoyant bubble and its interaction with a target horizontal wall is simulated with a 2-D numerical code based on the Boundary Element Method (BEM). Developed from a viscous potential flow approximation, the BEM takes into account only the part of the energy dissipation related to the normal viscous stresses. Hence, a simple analytical model based on lubrication approximation is co...

متن کامل

Simulation of a cusped bubble rising in a viscoelastic fluid with a new numerical method

We developed a new lattice Boltzmann method that allows the simulation of two-phase flow of viscoelastic liquid mixtures. We used this new method to simulate a bubble rising in a viscoelastic fluid and were able to reproduce the experimentally observed cusp at the trailing end of the bubble.  2000 Elsevier Science B.V. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 222  شماره 

صفحات  -

تاریخ انتشار 2007